Pulmonary infection by Yersinia pestis rapidly establishes a permissive environment for microbial proliferation.
نویسندگان
چکیده
Disease progression of primary pneumonic plague is biphasic, consisting of a preinflammatory and a proinflammatory phase. During the long preinflammatory phase, bacteria replicate to high levels, seemingly uninhibited by normal pulmonary defenses. In a coinfection model of pneumonic plague, it appears that Yersinia pestis quickly creates a localized, dominant anti-inflammatory state that allows for the survival and rapid growth of both itself and normally avirulent organisms. Yersinia pseudotuberculosis, the relatively recent progenitor of Y. pestis, shows no similar trans-complementation effect, which is unprecedented among other respiratory pathogens. We demonstrate that the effectors secreted by the Ysc type III secretion system are necessary but not sufficient to mediate this apparent immunosuppression. Even an unbiased negative selection screen using a vast pool of Y. pestis mutants revealed no selection against any known virulence genes, demonstrating the transformation of the lung from a highly restrictive to a generally permissive environment during the preinflammatory phase of pneumonic plague.
منابع مشابه
Gamma interferon, tumor necrosis factor alpha, and nitric oxide synthase 2, key elements of cellular immunity, perform critical protective functions during humoral defense against lethal pulmonary Yersinia pestis infection.
Pulmonary infection by Yersinia pestis causes pneumonic plague, a rapidly progressing and often fatal disease. To aid the development of safe and effective pneumonic plague vaccines, we are deciphering mechanisms used by the immune system to protect against lethal pulmonary Y. pestis infection. In murine pneumonic plague models, passive transfer of convalescent-phase sera confers protection, as...
متن کاملResistance to Innate Immunity Contributes to Colonization of the Insect Gut by Yersinia pestis
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is typically a zoonotic vector-borne disease of wild rodents. Bacterial biofilm formation in the proventriculus of the flea contributes to chronic infection of fleas and facilitates efficient disease transmission. However prior to biofilm formation, ingested bacteria must survive within the flea midgut, and yet little is know...
متن کاملSerotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis.
Yersinia pestis, the agent of plague, is usually transmitted by fleas. To produce a transmissible infection, Y. pestis colonizes the flea midgut and forms a biofilm in the proventricular valve, which blocks normal blood feeding. The enteropathogen Yersinia pseudotuberculosis, from which Y. pestis recently evolved, is not transmitted by fleas. However, both Y. pestis and Y. pseudotuberculosis fo...
متن کاملPhoP and OxyR transcriptional regulators contribute to Yersinia pestis virulence and survival within Galleria mellonella.
The virulence of Yersinia pestis KIM6+ was compared with multiple isolates of Yersinia pseudotuberculosis and Yersinia enterocolitica toward larvae of the greater wax moth Galleria mellonella. Although Y. pestis and Y. pseudotuberculosis were able to cause lethal infection in G. mellonella, these species appeared less virulent than the majority of Y. enterocolitica strains tested. Y. pestis sur...
متن کاملA LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut
Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm-mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 8 شماره
صفحات -
تاریخ انتشار 2012